
1
I
I
I
I
I
I
I
I
I
IC
f
I
I
I
I
I
I
I

SOFIWARE ENGINEERING LABORATORY SERIES SE i-87-60

ASSESSING THE ADA@ DESIGN
PROCESS AND ITS IMPLICATIONS:

A CASE STUDY

JULY 1987

ADA IS A REGISTERED TRADEMARK OF M E U.S.
GOVERNMENT, ADA JOINT PROGRAM OFFICE

National Aeronautics and
Space Administration

Goddard Space Flight Center
G iee n be i i ?VI 2 ry I2 il d 2 0 7 7 ?

SOFIWARE ENGiNEERlNG LABORATORY SERiES SEL-87-00

ASSESSING THE ADA@ DESIGN
PROCESS AND ITS IMPLICATIONS:

A CASE STUDY

, JULY 1987

ADA IS A REGISTERED TRADEMARK OF THE US.
GOVERNMENT, ADA JOINT PROGRAM OFFICE NASA

Nationar Aeronautics and
Space Admr n rstration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory(SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASAIGSFC, Systems Development Branch
University of Maryland, Computer Sciences Department
Computer Sciences Corporation, Flight Systems Operation

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of
reports that includes this document.

The primary authors of this document are

Sara Godfrey (Goddard Space Flight Center)
Carolyn Brophy (University of Maryland)

Other contributors include

William Agresti (Computer Sciences Corporation)
Edwin Seidewitz, Michael Stark (Goddard Space Flight

GRODY Design Team
Center)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

ii
0448

ABSTRACT

The results of a case study to analyze the approach taken
and the lessons learned during the design of the Gamma Ray
Observatory Dynamics Simulator in Ada' (GRODY) are presented.
Included are recommendations for defining the design phase
and outlining the products that should be developed during
this phase of the software development life cycle for future
flight dynamics software systems developed in Ada.

lAda is a registered trademark of the U.S. Government, Ada
Joint Program Office.

0448
iii

TABLE OF CONTENTS

Executive Summary vii
Section 1 . Introduction and Backaround 1-1
1.1 GRODY Project Description 1-1
1.2 GRODY Objectives 1-4
1.4 The Two Design Teams 1-6

Development Life Cycle 1-8

1.3 General Description of a Dynamics Simulator 1-6
1.5 Design Process Within the Standard Software

Section 2 . Desiun Process Approach 2-1
2.1 Design Considerations 2-1

2.1.1 FORTRAN Design Drivers 2-1
2.1.2 Ada Design Drivers 2-2

2.2 Ada Team Training 2-3
2.3 Effect of Requirements Document on Design 2-4
2.4 Design Approaches Investigated 2-6

2.4.1 Booch Object-Oriented Design 2-7
2.4.2 Process Abstraction Method 2-9
2.4.3 Object Diagrams 2-11

2.5 Choice of Design Method 2-12
2.6 Design Reviews and Design Products 2-14
Section 3 . Lessons Learned 4-1
3.1 Training and Experience 3-1

3.1.1 Effect of Team Experience on the

3.1.2 Effect of Training on Design Produc-
Design 3-1
tion 3-2

3.2 Requirements and Specifications 3-3

3.3.1 Early Selection of Design Methodology . . 3-4
3.3.2 Exploitation of Ada Features Through

Methodology 3-5

3.3 Ada Design Methodology 3-4

iv
0448

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont 'd)

3.4 Documentation of Design. 3-6
3.4.1 Usefulness of Object Diagrams 3-6
3.4.2 Compilable Design Elements. 3-7

3.5 Differences in the Designs 3-8
3.6 Changes in the Design Phase of the Life Cycle. . . 3-11
3.7 Staffing Considerations. 3-14
3.8 Cost of Using New Design 3-15

Cycle Phases 3-16 3.9 Cost of Transitioning to Ada at Different Life-

Section 4 - Summarv and Recommendations 4-1
Glossarv

References

Standard BibliouraPhY'of SEL Literature

V
0448

LIST OF ILLUSTRATIONS

Fiuure

1-1
1-2
2-1
2-2
2-3

3-1
3-2

3-3

3-4

Ada Experiment Organization.
A Dynamics Simulator
Booch Object-Oriented Design
Process Abstraction Method
GRODY Team's Initial Design Using Their Own
Methodology.

FORTRAN and Ada System Diagrams.
Comparison of FORTRAN and Ada Simulator
Operat ions

Levels of Effort f o r FORTRAN and Ada Teams
During Design.

F0RTRA.N and Ada Team Schedules

1-2
1-7
2-8
2-10

2-13
3-9

3-11

3-13
3-14

LIST OF TABLES

Table

1-1
1-2
2-1

Project Size Comparisons -1-3
Team Profiles. 1-7
Project Effort Comparisons 2-4

vi
0448

EXECUTIVE SUMMARY

During the past 2 years, a study has been conducted to
determine the applicability of Ada for software development
in the flight dynamics environment at the National Aeronau-
tics and Space Administration/Goddard Space Flight Center ,

(NASA/GSFC), Greenbelt, Maryland. The primary objectives of
this study are to determine the cost-effectiveness and feas-
ibility of using Ada and to assess the effect of Ada on the
flight dynamics environment. The study consists of parallel
software development efforts to develop the Gamma Ray Ob-
servatory Dynamics Simulator, with one team of developers
using FORTRAN and another team using Ada. A third team co l -
lects and assesses data from the two development efforts.
The study is a joint project with participants from NASA/
GSFC, Computer Sciences Corporation, and the University of
Maryland.

This document concentrates on the design phase of the devel-
opment effort, during which the following conclusions were
reached concerning the use of Ada as a development language
for flight dynamics applications:

0 Training is essential, not only training in Ada,
but also in the design methodologies applicable for
Ada. Managers and reviewers also need some train-
ing in design methodology.

0 The specifications document should be language neu-
tral and should not constrain the design.

0 The design methodology should be chosen as early as
possible and should be suitable f o r expressing Ada
features. During this study, object diagram meth-
odology seemed to be extremely useful.

vii
0 4 4 8

0 Documenting an Ada design requires different design
products than are used to describe a FORTRAN de-
sign. Object diagrams and compilable design ele-
ments seemed very useful for representing and
validating the design.

0 Designing with Ada seems to require a longer design
phase, with reviews occurring later in an Ada de-
sign phase than they would in a FORTRAN design
phase.

0 The changeover to Ada will increase design cost due
to the loss of the previous design legacy.

Further study is continuing to assess the effect of using
Ada during other life-cycle phases and throughout the devel-
opment life cycle of other projects.

viii
0 4 4 8

SECTION 1 - INTRODUCTION AND BACKGROUND

This document is the second in a planned series of five doc-
uments describing various aspects of developing a dynamics
simulator to be used as part of the ground support system
for the Gamma Ray Observatory (GRO) satellite. This proj-
ect, the Gamma Ray Observatory Dynamics Simulator in Ada
(GRODY), is significant because a corresponding version is
being developed in FORTRAN. Analysis of the two projects
will provide insight into the implications of developing
flight dynamics software in Ada versus FORTRAN--the usual
development language in the past. This document concen-
trates on the design phase of the project.

Section 1 provides background material on GRODY, dynamics
simulators in general, and the phases of the software devel-
opment life cycle. Section 2 details the approach taken
during the design process. It describes the major activi-
ties that occurred during the GRODY design effort, the meth-
odologies investigated, the design documentation, and the
staffing profile for the design effort. Section 3 discusses
the success of various aspects of the design approach and
offers some insight into possibie changes in this approach.
Section 4 briefly summarizes the lessons learned in the de-
sign process and presents some recommendations for conduct-
ing the design effort in future Ada development projects.

1.1 GRODY PROJECT DESCRIPTION

The GRODY project is an experiment in the effectiveness of
Ada for flight dynamics software development. The experi-
ment, which is being conducted at the National Aeronautics
and Space Administration/Goddard Space Flight Center (NASA/
GSFC), features the parallel development of software in
FORTRAN and Ada. Supporting this Ada experiment are partic-
ipants from three distinct installations: NASAIGSFC,

1-1
0448

Computer Sciences Corporation (CSC), and the University of
Maryland. These people are divided into three functional
groups: the FORTRAN development team, which is developing a
GRO dynamics simulator under the standard methodology used
in the flight dynamics environment (References 1 and 2); the
Ada development team, which is applying modified design
techniques (References 3 and 4) and using the Ada develop-
ment language; and a study group, which is directing the
experiments. Data on both projects are being collected and
stored on the Software Engineering Laboratory (SEL) data-
base. Figure 1-1 illustrates this organizational struc-
ture. Work on both dynamics simulators began in January
1985, with the FORTRAN team beginning a typical development
cycle and the Ada development team, a training phase.

A

STUDY TEAM (5)

b ASSESSMENTS DEFINE PROJECT A TRAINING h
DEVELOPMENT

I ADATEAM(7)

DEVELOP PROJECT
USING ADA

(GSFC, CSC)

(GSFC, CSC, U. MD)

SOWARE

FORTRAN TEAM (7)

DEVELOP AND DELIVER
GRO DYNAMICS

SIMULATOR
(GSFC, CSC)

ADA
OOD
PAM
CSM

L - , 1 1

OPERATIONAL
SOWARE

Figure 1-1. Ada Experiment Organization

Because the FORTRAN development team is responsible for the
actual software that will be used for GRO mission support,

1-2
0 4 4 8

they are more constrained by their schedule than the Ada
team. An additional requirement for the FORTRAN'team is to
develop one portion of the software so that it can later be
integrated into a real-time piece of software to be used for
simulation purposes. With these two exceptions, the two
teams are developing functionally identical software systems.

COMPONENT MEASURED

The FORTRAN development effort is being carried out using a
DEC VAX-11/780 computer; the Ada' development is being done
on a DEC VAX-8600. Early estimates of the size of the proj-
ect indicated that the completed system (for both the FORTRAN
and the Ada developments) was expected to be approximately
40,000 source lines' of code (SLOC). Later estimates for
the Ada development place the system size in the range of
110,000 to 120,000 SLOC. Estimates for executable SLOC in
the Ada system are 40,000 to 45,000; the completed FORTRAN
system contains 25,000 executable SLOC. Table 1-1 lists
size comparison information for the two projects. Additional
information on the experiment is presented in Reference 3 .

FORTRAN

Table 1-1. Project Size Comparisons

TOTAL LINES OF CODE

TOTAL COMMENTS

EXECUTABLE LINES

BLANK LINES

REUSED LINES

45,000 SLOC

19,000 SLOC

25,000 SLOC

MINIMAL

16,000 SLOC(36'Xo)

40,000 SLOC

27,000 SLOC

1 10,000 SLOC

43,000 SLOC

r-
aD
9

2.000 SLOC(2"!0) I 3
a ESTIMATED MAY 1,1987 (BASED ON CODE 80% COMPLETE).

IA source line of code is an 80-byte record processible by
the computer. It therefore includes comments, executable
'code, and nonexecutable code such as type statements, block
data statements, and dimension statements for FORTRAN or
declarations and blank lines for Ada.

1-3
0448

1.2 GRODY OBJECTIVES ’

The overall goal of the Ada/FORTRAN software development
project is to develop insight into the applicability of the
Ada development methodology and language in the NASA soft-
ware environment. Several objectives have been established
as a mechanism toward attaining this goal (Reference 3) .

The primary one is to determine the cost-effectiveness and
feasibility of using Ada to develop flight dynamics software
and to assess the effect of Ada on the flight dynamics en-
vironment. A related objective is to determine whether
present development methodologies in use within the flight
dynamics environment are suitable for Ada as is or whether
they need to be adapted for Ada and to investigate other
methodologies related to the use of Ada. For example, is
the standard development life cycle (Section 1.5) being used
on the FORTRAN development equally suitable for an Ada de-
velopment? wnicn design methodology is best suited for this
type of Ada development?

Because reusability is an important factor for cost-effective
software development, this experiment will also try to de-
velop approaches for maximum reusability when Ada is being
used for implementation. A major portion of the software
developed in the flight dynamics environment is reused; be-
cause Ada is designed to facilitate reusability, the methods
developed should maximize this feature.

Other factors being assessed throughout the GRODY project
are the differences in reliability and maintainability be-
tween a FORTRAN implementation and one in Ada. Obviously, a
system that is more reliable (i.e., has fewer errors per
~ O O , O O O SLOC) will cost less to maintain.’ Similarly, an

Isoftware maintenance consists of two activities occurring
after the software is delivered: correction of errors dis-
covered during operational use of the software and enhance-
ments of the software to add new cagability.

1-4
0 4 4 8

1
I
1
8

1
1
I
R
i
I

li
1
4
I

implementation that is easier to correct and enhance will be
less costly to maintain. Will it be less costly to maintain
the Ada or the FORTRAN dynamics simulator? Which will be
more reliable? These questions are particularly important,
considering that the annual cost of maintenance ranges from
10 to 35 percent of the original development cost in staff-
hours (Reference 2).

Ada is required as the implementation language for the Space
Station, an extremely large, complex, long-term project.
One objective of the GRODY experiment is to develop a set of
software measures that will be helpful when planning for the
use of Ada during the Space Station project. Among these
measures are size estimates of an Ada implementation and the
expected productivity during the implementation of a scien-
tific application. .Useful information can also be gained
about the reliability and maintainability--the effort re-
quire2 to change and repair t h e software--when Ada has been
used for the implementation. Most of these software meas-
ures are well defined for FORTRAN implementations, but not
much similar information exists for scientific applications
in Ada.

Another factor of interest with the longer term projects
such as the Space Station is the issue of portability. Can
a particular implementation be moved from one machine to
another with ease? Certainly, on long-term projects, the
rehosting of the software to a new computer system is a
likely occurrence, and a more portable implementation would
reduce these rehosting costs.

These objectives were carefully considered in every phase of
the GRODY project. Some of the objectives influenced deci-
sions made during the design phase as well as the approach
taken during the design phase.

1-5
0448

1.3 GENERAL DESCRIPTION OF A DYNAMICS SIMULATOR

A general description of a dynamics simulator is included
here to acquaint the reader with the type of design problem
that confronted both development teams. A general knowledge
of the type of problem becomes important later when the ad-
vantages and shortcomings of the different design methodolo-
gies are discussed.

The purpose of a dynamics simulator is to test and evaluate
the onboard attitude control logic under conditions that
simulate the expected in-flight environment as much as pos-
sible. The simulator can be considered a control system
problem, beginning with an onboard computer (OBC) model that
uses sensor data to compute an estimated attitude. Control
laws are then modeled to generate commands to the attitude
hardware (actuators) to reduce the attitude error. A truth
model portion of the simulator simulates the response of the
attitude hardware and generates a true attitude for the
spacecraft. Sensor data corresponding to the true attitude
are produced by the truth model and sent back to the OBC
model (Figure 1-2).

1.4 THE TWO DESIGN TEAMS

The two design teams were approximately the same size, with
7 people on the Ada team and from 7 to 10 (average 9) on the
FORTRAN team. The experience of the two teams was, however,
somewhat different.
general, with more years of software development experience
and a wider range of application experience.
they were familiar with'more programming languages, an aver-
age of seven compared to three for the FORTRAN team. On the
other hand, the FORTRAN team were more experienced in the de-
velopment of dynamics simulators. About two-thirds of the
FORTRAN team had previously developed a dynamics simulator
compared to only about two-fifths of the Ada team (Table 1-2).

The Ada team were more experienced in

In addition,

1-6
0448

0 4 4 8

SPACECRAFT
MECHANICS

TORQUES,
ANGULAR MOMENTUM

I OBC MODEL

I COMMANDS
r-
aD
P s a
aD w
Q
0

ACTUATORS

Figure 1-2. A Dynamics Simulator

Table 1-2. Team Profiles

CHARACTERISTIC

NUMBER OF LANGUAGES
KNOWN (MEDIAN)

TYPES OF APPLICATION
EXPERIENCE (MEDIAN)

YEARS OF SORWARE
DEVELOPMENT EXPERIENCE
(MEAN)

FORTRAN TEAM

3

3

4.8

TEAM MEMBERS WITH
DYNAMICS SIMULATOR
EXPERIENCE

1-7

66%

7

4

8.6

43%

1.5 DESIGN PROCESS WITHIN THE STANDARD SOFTWARE DEVELOPMENT
LIFE CYCLE

The standard software development life cycle used in the
flight dynamics environment is described in Reference 1. A
brief description of this life cycle and the products that
are usually generated during each phase are presented here
so that comparisons between the Ada and FORTRAN life cycles
can be made. The life cycle described here was generated
for use on software development projects using FORTRAN. The
effect of using this life cycle when developing in Ada will
be discussed later in this document.

The standard life cycle can be divided into the following
seven sequential phases:

0 Requirements Analysis--During this phase, the de-
veloper analyzes a document that contains the functional
specifications and requirements to assess the completeness
and feasibility of the requirements and to make an initial
estimate of the-required resources. The results of this
analysis are summarized in a requirements analysis report.

0 Preliminary Design--In this phase, the design proc-
ess is begun by organizing the requirements i n t o functional
capabilities and distributing these into subsystems.

0 Detailed Design--In this phase, the design that was
outlined during the preliminary design phase is expanded to
describe all aspects of the system.

0 Implementation--This phase consists of coding new
modules from the design specifications, revising old code to
meet new requirements, and unit-testing to ensure that each
module functions properly. *

0 System Testing--During this phase, the completely
integrated system produced during the implementation phase
is tested according to a test plan (also generated during

1-8
0 4 4 8

the implementation phase) to verify that all required system
capabilities function properly.

0 Acceptance Testing--The testing during this phase
is done by an independent team to ensure that the system
meets all requirements.

0 Maintenance and Operation--At this point, the soft-
ware becomes the responsibility of a maintenance and opera-
tions group who implement any further enhancements and any
error corrections that might be necessary.

The actual design process begins with a top-down approach to
decompose the requirements. During the preliminary design
phase, the development team organize the requirements into
functional capabilities and then specify the major func-
tional subsystems and their input/output interfaces and
processing modes. The design is refined to a hierarchical
level of two levels below the subsystem driver. During this
phase, an initial determination is made of the available
reusable code. This functional design of the system is doc-
umented in the preliminary design report and is presented
for review in a preliminary design review (PDR). Responses
to coiiimer;ts and criticisms received at the PDR are iiicorpo-
rated into the functional design contained in the final pre-
liminary design report. This phase typically requires
10 percent of the time and 10 to 15 percent of the total
effort required for the entire development cycle in a FORTRAN
implementation (Reference 2).

During the detailed design phase, the functional design gen-
erated during the preliminary design phase is expanded to
produce "code-to" specifications for the system. These in-
clude functional and procedural descriptions of the system,
data flow descriptions, complete input/output file descrip-
tions, operational procedures, descriptions of each module,
and descriptions of all internal interfaces between modules.

0448

1-9

Following the pattern of the preliminary design phase, these
design details are documented in a detailed design document
and presented in a critical design review (C D R) .

responses to the comments received at the CDR are incorpo-
rated into the detailed design contained in the final de-
tailed design document. This phase typically requires
15 percent of the time and effort required for the entire
development cycle in a FORTRAN implementation.

Again,

1-10
0448

SECTION 2 - DESIGN PROCESS APPROACH

I
8
I
D
4
1
I
I
I

As noted earlier, the FORTRAN team was able to move into the
design phase of the software life cycle immediately after
the requirements analysis phase, following the standard
pattern for software development in the flight dynamics en-
vironment. A specifications and requirements document (Ref-
erence 5) provided the functional requirements and actually
contained the highest level design for the FORTRAN develop-
ment; the document is organized into major subsystems corre-
sponding to the partitioning used for the last several
successful simulator projects. The FORTRAN team was able to
begin the design process by using this subsystem partition-
ing and then refining the design to include the lower level
routines. Following this design pattern enabled the FORTRAN
team to make the most use of code used successfully for
other simulator projects, since the overall design nf t h e

FORTRAN system is similar t o previous simulators. It also
had the advantage of clarifying the interfaces between sub-
systems early in the project.

.

In contrast, the Ada team needed to begin their design proc-
ess with a period of training, including training in design
methodologies. The Ada team also discovered that several
design issues began to surface during the requirements anal-
ysis phase, causing their requirements analysis phase to
include some activities that are different from those usually
undertaken during that phase.

2.1 DESIGN CONSIDERATIONS

2.1.1 FORTRAN DESIGN DRIVERS

From the beginning of the design phase, several factors were
very influential in the development of the FORTRAN design.
First, there was a large body of existing code for dynamics
simulators that could possibly be reused--thus saving

2-1
0448

development time and cost--if the design for the simulator
was similar to previous ones. In addition, the FORTRAN team
developing the design were very experienced with previous
dynamics simulators and were familiar with the legacy of
design success using particular interfaces and subsystem
partitioning. The requirements document was organized into
sections consistent with the previously successful subsystem
partitioning, which further encouraged the FORTRAN team to
reuse the previous design patterns. Finally, the FORTRAN
team had more schedule pressure than the Ada team because
the FORTRAN system was considered the real, operational
software and thus needed to be ready to support the mission
on schedule.

2.1.2 ADA DESIGN DRIVERS

One goal of the Ada team was to develop a dynamics simulator
design that would take full advantage of the features Ada
offers. To accomplish this, the Ada team needed thorQugh
training in Ada and the Ada design methods, that is, those
methods that encourage the full use of Ada's features.
Although the Ada team consisted of very experienced devel-
opers, who were familiar with a wide variety of languages,
Ada and its design methods were new to them.

Because there was no existing code in Ada that could be
used, there was no tendency to adopt a particular design
solely to maximize the amount of reusable code. Reusability
was, however, still a factor influencing the design because
another goal was to produce a design that would encourage
the development of modules that could be reused in future
Ada development efforts.

The Ada team had a strong desire to develop an independent
design, one that was not influenced by the design of pre-
vious dynamics simulators. To do this, they needed the
opportunity to work directly from the system requirements,

2-2
0448

and it was important that the system requirements be lan-
guage independent. One factor in favor of an independent
design from the Ada team was their inexperience with the
specific task of developing a dynamics simulator.

Finally, the Ada team needed time if they were to develop
this new, independent design. Although the Ada team had a
specific development schedule, they were not constrained by
this schedule as were the FORTRAN team. They had the luxury
of spending some extra time in areas where it was needed,
such as in training, experimenting with different methodolo-
gies, and developing new methodologies when none of the
existing ones seemed suitable.

2.2 ADA TEAM TRAINING

Because the Ada team members were new to Ada and its design
methods, their software development cycle began with a
training phase. The training phase was c a r e f i ~ l l y designed
to give the team a good working knowledge of Ada and its
features and to acquaint them with several useful design
methodologies for applications to be implemented in Ada.
Two months of full-time effort were devoted to training each
xember of the Ada team, with the effort spread over a 6-month
period (Table 2-1).

The training plan was carefully formulated by the experiment
participants from the University of Maryland and consisted
of several different types of activities. The resources
used included an Ada textbook, an Ada language reference
manual, and videotapes on the specifics of Ada. The video-
tapes were viewed in group sessions, followed by a discus-
sion period, and then enhanced by reading and coding
assignments. Toward the end of this language training, lec-
tures on Ada-related design methods were presented. During
these lectures, emphasis was placed on learning Grady Booch's
Object-Oriented Design (Section 2.4.1), George Cherry's

-
0448

2-3

Process Abstract Methodology for Embedded Large Applications
(Section 2.4.2), and general software engineering methodol-
ogy as well.

Table 2-1. Project Efforta Comparisons

PHASE

TRAINING

REQUIREMENTS ANALYSIS

 DESIGN^

CODVTEST

SYSTEM TEST

ACCEPTANCE TEST

STAFF-HOURS

FORTRAN

0

972

3227

4734

2955

21 70

ADA

3225

1393

3881

1037s

d

d

DURATION IN MONTHS

FORTRAN

0.0

1.5

4.0

6.0

5.0

5.0

ADA

6.0

2.0

6.0

16.0

NIA

NIA

arrrA-s .- -. . -- -crrun I ID DUM ut I tCHNiCAi WNAGEMENT, AND SUPPORT HOURS REPORTED
ON SEL RESOURCE SUMMARY FORMS.

 HOURS UP TO CDR.

~WPECTED MAJOR SAVINGS WITH ADA.
CACTUAL HOURS THROUGH JUNE 1,1987; ESTIMATED FOR JUNE 1 TO JULY 1.

The final training activity consisted of the design and im-
plementation of a practice problem. This training problem
was a team effort and consisted of nearly 6000 lines of code.
More detailed information on the Ada training program and
recommendations for the design of future Ada training pro-
grams are presented in References 6 and 7.

2.3 EFFECT OF REOUIREMENTS DOCUMENT ON DESIGN

The Ada team tried to begin the requirements analysis phase
using the same approach taken by the FORTRAN team. They
quickly realized that the requirements and specifications
document (Reference 5) actually contained some of the high-
level design used previously on dynamics simulator projects
developed in FORTRAN. Because the team wanted to develop

2-4
0448

an independent design, one that would be particularly suit-
able for an Ada development, they rewrote the specifications
and requirements document using a specification approach
called the Composite Specification Model (CSM) (Refer-
ence 8) . Team members had been given an introductory lec-
ture on CSM during their training and had no particular
problem in using this method.

CSM allows a system to be represented from functional, dy-
namic, and contextual views. Using CSM as a specification
tool provided information on its suitability for specifying
requirements typical of those encountered in the flight dy-
namics environment. It also allowed the Ada team to become
thoroughly familiar with the system requirements as they
systematically analyzed them and reformulated them into the
new specifications document (Reference 9). One feature of
the new document was the description of functional process-

language).

ing iSi t o pDL (program design

The team felt that the new specifications document success-
fully removed the bias toward a FORTRAN-like design by re-
moving the inherited design features from the functional
specification. They also felt they had gained a much better
understanding of the system they were trying to develop.
The requirements analysis report generated by the Ada team
consisted of two parts: the rewritten requirements specifi-
cation and a requirements analysis assessment report (Refer-
ence 10). The requirements assessment report detailed such
areas as incomplete requirements, external data interfaces,
existing code that might be reused, and initial resource
estimates. The generation of these two documents completed
the requirements analysis phase f o r the Ada team. During
the requirements analysis phase, the Ada team spent
8.9 staff-months of effort over a 2-month period; the

2-5
0 4 4 8

FORTRAN team Spent 6.2 staff-months of effort over a 6-week
period (Table 2-1).

2.4 DESIGN APPROACHES INVESTIGATED

One of the objectives of the GRODY project was to investi-
gate design methodologies that make effective use of Ada's
features. Such methodologies use the so-called object-
oriented approach, which means that objects are used as the
basic unit of design instead of the traditional functional
procedures. Previous FORTRAN designs used procedural ab-
straction rather than the object-oriented approach. In pro-
cedural abstraction, a particular subroutine can be thought
of as a black box that provides a certain function and pro-
duces a particular set of output values whenever it-is pro-
vided with specific input values. For example, applying
this to the dynamics simulator problem, the truth model can
be considered a procedural abstraction that provides the
function of computing the current attitude. Whenever it is
given particular input values and actuator commands, it pro-
vides the sensor data that correspond to that attitude state.

Typically, there are also certain object-oriented elements
in the FORTRAN design. For exariple, when the truth iiiodel.
function provides the sensor data, the lower level routines
are organized by objects so that the sensor data provided by
a particular sensor (such as a fixed-head-star tracker) are
modeled in a particular routine designed to provide just
that data. Similarly, another routine would model the data
from another type of sensor, such as a fine Sun sensor.

To use Ada and its particular features (e.g., packages, in-
formation hiding, and tasks) effectively, the Ada team wanted
to use a methodology well suited for these features. They
investigated several different methodologies and actually
developed the top-level design for the dyna.mics simulator in
three different object-oriented methodologies. Because of

2-6
0448

time constraints, it was impossible to explore each of these
methodologies in more depth. Also, because all the designs
were being developed concurrently, it was extremely diffi-
cult for the team to keep the design approaches completely
separate. Even considering this difficulty, some fairly
strong conclusions were reached about each of the method-
ologies explored. The following subsections describe the
different methodologies tried and the advantages and disad-
vantages of each.

2.4.1 BOOCH OBJECT-ORIENTED DESIGN

The first object-oriented methodology used to approach the
design of the dynamics simulator was developed by Grady
Booch and is described in Reference 11. The usual applica-
tion of Booch's design calls for translation of a textual
specification into the design, using the technique of under-
lining nouns and verbs in the specification. The nouns map
into objects in the design, and the verbs map into object
operations. Obviously, some discretion must be used when .

choosing the nouns and verbs to be mapped into the design.

The design notation uses rectangles to represent Ada pack-
ages and parallelegrams tc represent tasks. Within each of
these figures, there are two types of "windows": small rec-
tangular windows to show visible procedures, functions, or
entities and rounded windows to show visible data types.
Hidden code is represented by blobs placed inside the fig-
ures. Arrows leading from an area of code indicate that the
code uses an operation or data type in another object. Fig-
ure 2-1 is an example of Booch's design notation as it was
applied to part of the dynamics simulator.

The graphic notation of Booch's methodology is clear and
very descriptive of system objects, their component objects,
and the use of one object by another. It does not, however,
show which specific object operation is used, and it has no

2-7
0448

USER-COMMAND

/ ACADS

I
SEND-GRD-CMD P=-&

I SET-PARAMS I

Figure 2-1. Booch Object-Oriented Design

a
W
d
d
0

0448
2-8

method for showing data flows between objects. There is
also no way to indicate a hierarchical structure, which is
necessary for any large system.

The greatest drawback encountered with the Booch methodology
was the technique for deriving the design from the specifi-
cations. The method of underlining text portions works well
if the specification can be written in a few paragraphs, but
it becomes a monumental task if the specification is of any
size or complexity. In addition, the method does not pro-
vide any technique for deriving a design from a graphical
specification.

2.4.2 PROCESS ABSTRACTION METHOD

Another methodology investigated by the Ada team was the
Process Abstraction Method for Embedded Large Applications
(PAMELA, or PAM for short). PAM was developed by George
Cherry for use with real-time and embedded systems and is
described in detail in Reference 12.

With PAM'S design notation, processes are all concurrent
objects and are represented by boxes. Arrows between the
boxes represent rendezvous between processes. Labels on the
arrows also provide a method for indicating data flow and
some control information. Each process is marked either
primitive (P) or nonprimitive (N). Primitive processes are
Ada tasks, and nonprimitive processes are Ada packages that
can be further decomposed until only primitive processes
remain. Figure 2-2 is an example of this design notation.
This decomposition allows a hierarchical structure to be
represented using PAM, which is an advantage over Booch's
methodology. The team also found that PAM provided a fair
amount of guidance for constructing good processes.

PAM seemed to be very effective for the design of a real-time
system. GRODY, however, was not specified as a real-time
application with concurrent processes, even though parts of

2-9
0448

2-10

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

the system might be considered concurrent since GRODY models
actions that occur in parallel in real life. Because the
system is a simulation, it has no requirement for concurrent
processes, except for the interaction the system has with
the user. Thus, one interpretation of PAM'S principles
would leave -large portions of the system represented as
primitive processes with no method available for decomposing
these into lower level entities. This problem limits the
effective use of PAM for this type of application.

The only advantage in designing GRODY in terms of concurrent
processes is the. automatic scheduling of the sequence of
process execution. This advantage is lost when considering
the overhead of using Ada tasks-and making Ada rendezvous.
GRODY is required to run on a purely sequential machine and
to be implemented in VAX Ada, in which this overhead can be
quite large. In a simulator like GRODY, this consideration
is particularly important because the main loop is a large
portion of the system and may be executed tens of thousands

. of times per run. Obviously, such a performance degradation
in this area could not be permitted.

2 . 4 . 3 OBJECT DIAGRAMS

The final methodology explored by the Ada team is one that
the team had begun to develop during the design of the prac-
tice training problem-. This approach tries to combine some
of the best points of the previous design methodologies
while expanding the approach so that it is flexible and gen-
eral (References 13 and 1 4) .

The notation of this object-oriented methodology has been
named "object diagrams" and, as in the previous two nota-
tions, boxes represent objects. The hierarchical structure
of the system can be shown by decomposing each object into
lower level objects. Arrows on the object diagrams repre-
sent control flow or the use of an operation in the object

2-11
0448

to which the arrow points. An object description lists op-
eration names and the data flow between objects during each
operation call.

Object diagrams thus illustrate the control structure of the
system, and the object descriptions define the data flow in
the various operations. The object diagrams are drawn with
the senior-level controlling objects at the top of the page
and the junior-level controlled objects below them. This
serves as a convenient mechanism for demonstrating system
hierarchy. As in PAM, each object can be decomposed into
lower level component objects. Figure 2-3 represents an
early version of the GRODY system using object diagrams.

The principles for constructing object diagrams are less
explicit than those provided by the Booch methodology o r
PAM. They are based on the general principles of informa-
tion hiding, abstraction, and design hierarchy. Efforts by
the Ada team.are in progress to outline these principles
systematically to provide adequate guidance for designers
attempting to use this methodology. Additional work is con-
tinuing to develop a technique for constructing object dia-
grams from a graphical specification (Reference 15).

2 . 5 CHOICE OF DESIGN METHOD

Of the three design methods explored during the preliminary
design phase, only the object diagram methodology seemed
complete enough to express the design of a complex system
like a dynamics simulator. This methodology was therefore
chosen to complete the preliminary design and to continue
enhancing the design during the detailed design phase.

A few problems were noted with the early version of the
GRODY design that was developed during the design methodol-
ogy comparison period. The strong coupling between some of
the objects is not effectively shown by the design diagram

2-12
0448

!I
I
I
I
1
1
I
I
I
1
I
I
I
I
I
I
I
I
I

RESULTS- IO
4

SIM
RESULTS -

Figure 2-3. GRODY Team's
Methodology

FILE-IO 1 TTEXT-IO

ThER CONTROL
OPERATION

5
TIMER -

Initial Design Using Their Own

2-13
0448

I
I
I
I

I
I
I
I
I
I
8
I
I

I
I
I
I

m

n

. in Figure 2-3. For example, there is a large set of param-
eters hidden in the truth model object that are used by the
user interface object because the user needs to access these
parameters, modify them, and store them. Modifications were
made to the notation during preliminary design so that these
relations could be shown. In fact, the design methodology
evolved throughout the entire design phase as the Ada team
found better ways to express the design they were developing.

2.6 DESIGN REVIEWS AND DESIGN PRODUCTS

The Ada team tried to follow the standard pattern in the
flight dynamics environment concerning design reviews. This
pattern calls for a PDR to be held at a stage in the devel-
opment when the top levels of design are well defined, the
requirements are divided into functional objects, and the
interfaces between these objects are developed.

The FORTRAN team completed their preliminary design in about
a month and a half and presented a PDR that included the
usual design products for this phase. These included struc-
ture charts of the subsystems showing two levels of routines
below the subsystem driver, data flow diagrams showing the
interfaces between the subsystems, and the display formats.
Prologs and PDL were available for the routines identified
in the structure charts. Table 2-1 compares the length of
the phases and the effort expended during these phases.

The Ada team had some difficulty deciding when they were
actually ready to present the PDR because the clear guide-
lines applied for a FORTRAN development were not exactly
applicable for an Ada development. A PDR (Reference 16) was
held about a month after the design effort began with the
rewritten specifications. The high-level design for GRODY
was presented in terms of object diagrams and their accom-
panying operation dictionaries. As with the FORTRAN effort,
the display formats were also presented. The team noted

2-14
0448

I
I
I
I
I

that it was not meaningful (or even possible) to represent
the Ada design with structure charts.

The detailed design phase lasted about 2 months for the
FORTRAN team and culminated in the CDR. This review de-
scribed the lower level routines, data flow, internal in-
terfaces between modules, input and output files, and
operational procedures. These were described in the design
products of structure charts, data flow diagrams, file for-
mats, and operational scenarios. In addition, all of this
information was compiled into a detailed design document.
Prologs and PDL were produced for all modules.

During the detailed design phase, the Ada team again had
some difficulty in determining the appropriate time in de-
velopment for the CDR. For example, the Ada team wanted to
deyelop PDL in Ada, but this was very time consuming and
tended to obscure the line between coding and design. After
a 4-month period of detailed design work, the CDR was pre-
sented. Some team members felt that this was an arbitrary
point in the design phase and that there was still a great
deal of design work to be done. Others felt they were
better prepared than usual because they had gained such a
thorough understanding of the system they were developing.

The presentation at the CDR included object diagrams, opera-
tional scenarios, display formats, and sample PDL. The PDL
used by the team was Ada-like but was not actually the com-
pilable Ada they had hoped to use. A special reference
guide explaining the object diagram symbols was distributed
at the review to help attendees understand the object dia-
gram notation. Between the PDR and the CDR, the object dia-
gram methodology had continued to evolve, resulting in a new
notation being used for the CDR and the detailed design
documents.

2-15
0448

The detailed design was recorded in a detailed design docu-
ment completed shortly after the review. This docuinent is
being updated regularly during the implementation to ensure
that it reflects the design actually being implemented.

2-16
0448

SECTION 3.- LESSONS LEARNED

Now that the design phase of the GRODY project has been com-
pleted, it is possible to cite a number of areas where val-
uable experience has been gained concerning the use of Ada
on applications software in the flight dynamics environment
(Reference 17). A number of questions concerning the use of
Ada for this type of application have at least preliminary
answers that will be addressed in this section.

3.1 TRAINING AND EXPERIENCE

3.1.1 EFFECT OF TEAM EXPERIENCE ON THE DESIGN

Previous attempts to use Ada for scientific applications
have usually resulted in an Ada system with a FORTRAN-like
design (Reference 18). In the case of GRODY, the design
generated by the Ada team looks very different from a FORTRAN
design, attributed in part to several factors involving the
team's experience.

First, because the Ada teamwere experienced in many lan-'
guages, they were not set into any particular design pattern
that might have been learned by using just one language.
This broad base of experience enabled them to view the de-
sign problem from many different angles and to develop dif-
ferent approaches toward the design of the system.

Second, the Ada team were not experienced in using Ada, but
they were very enthusiastic and eager to use all of Ada's
advantages. This led to a sincere effort to develop an
Ada-style design that would really test Ada's features in
the flight dynamics environment.

Third, the Ada team were not experienced in designing dy-
namics simulators and thus were not biased by previous de-
sign efforts to generate dynamics simulators in FORTRAN.
The team as a whole had a broad experience base free from

3-1
0448

bias toward a particular language and a positive, enthusias-
tic attitude toward Ada.

3.1.2 EFFECT OF TRAINING ON DESIGN PRODUCTION

Obviously, when the goal is to produce a design using Ada's
features to best advantage, it is essential that the design
team be well acquainted with those features. As previously
mentioned, the Ada team undertook a program of intensive Ada
training before beginning the actual design work on the dy-
namics simulator. The training included a training problem
that proved extremely useful.

To converge on an appropriate design, it is also essential
that the team knows different design methods. Most
programmer/designers in the flight dynamics envi'ronment use
functional decomposition as their design method. Part of
the training for the Ada team was in the use of other design
methodologies. Cherry's PAMELA and Booch's object-oriented
design methodologies are radically different from the stand-
ard procedural decomposition used in this environment. Such
exposure was one source of broader insight into problem-
solving for the team. To fully exploit Ada's features, var-
i m s design methodologies, espsz i a l ly the m e to be iised f o r
the project, must be included in the training; just knowing
the language is not enough.

An appropriate design both exploits Ada's features and makes
implementation easier, and the Ada team found that implemen-
tation was significantly promoted by their design. It was
easy for a programmer to code from the design documents,
even when the coder was not the designer for that section of
the project. This has an important benefit in that it per-
mits a buildup of staff during implementation, allowing par-
allel development. In a project with a tight schedule,
managers may be able to increase the staffing to minimize
time.

3-2
0 4 4 8

Additional training in Ada design methodology should be con-
sidered for those in managerial positions so that the man-
agers will be able to interpret the design notation used
during design reviews. Such an understanding will enable
the managers to better assess the design being presented and
to provide valuable feedback to the design team.

3.2 REOUIREMENTS AND SPECIFICATIONS

In the current flight dynamics environment, the specifica-
tions from which a development team works are heavily biased
toward FORTRAN. In fact, the high-level design for the sim-
ulators is actually contained in the specifications docu-
ment, and this design has not changed for several years.
Therefore, to really explore the various design methodolo-
gies, the Ada team found they had to rewrite the specifica-
tions to remove the bias toward FORTRAN and the whole FORTRAN
legacy. As previously mentioned, the requirements were re-
written using the Composite Specification Model.

It was during this respecification process that the highest
level of the design began to take shape. Because the prob-
lem domain lends itself well to an object-oriented view,
problem-solving proceeded along this line.

Team members felt that the resulting specifications were
language neutral. The team had not yet had extensive exper-
ience with Ada, and this particular specification method
existed before Ada. New specifications freed the team from
the FORTRAN-oriented design built into the original specifi-
cations. One person felt that even the new specifications
had a design bias built in; however, this bias was toward an
object-oriented approach, and it was felt that this would
not limit the development with Ada.

The team felt that rewriting the specifications increased
their understanding of the problem more than merely analyz-
ing the original specifications would have done. One

3-3

0 4 4 8

additional consequence of rewriting the specifications was
that the team were prevented from postponing some important
questions until implementation, which would have meant major
design changes at that point.

Future projects in which Ada is being considered as the de-
velopment language should concentrate more effort on the
original specifications document. Ideally, the requirements
should be structured in a language-independent form to allow
the developers more latitude in choosing a design that sat-
isfies the requirements and makes full use of the features
of the implementation language.

It seems clear that new Ada developments will require more
time during the requirements analysis, specification, and
design phases. This extra effort should, however, result in
a deeper understanding of both the problem and solution
domains, yielding a higher quality product, better documen-
tation of the earlier phases, and a cost savings during
testing and maintenance.

3.3 ADA DESIGN METHODOLOGY

3.3.1 EARLY SELECTION OF DESIGN METHODOLOGY

The chances of producing a good Ada design can be greatly
improved by selecting a design methodology that is appro-
priate for the type of project and by making this selection
as early as possible. Selecting a methodology that is
unsuitable for producing a complete design can result in
considerable loss of design time. The Ada team spent a s i g -

nificant amount of time in developing their own methodology,
which proved quite satisfactory for GRODY, but the develop-
ment of this methodology extended their design time because
they were essentially developing the design for both the
project and the methodology concurrently.

3-4
0448

3.3.2 EXPLOITATION OF ADA FEATURES THROUGH METHODOLOGY

If the methodology does not exploit Ada's features, why use
Ada rather than another language? Many of Ada's benefits
stem from the portability and maintainability gained by
using packages, tasks, and generics--central features dis-
tinguishing Ada from most other languages.

One of the study objectives was to experiment with various
design methodologies. The Ada team investigated structural
decomposition, Cherry's PAMELA, and Booch's object-oriented
design. They found that structural decomposition did not
encourage the use of Ada's unique features; that PAMELA,
which was designed for use with embedded systems, was too
oriented toward concurrency for this application; and that
Booch's object-oriented design methodology did not provide
enough guidelines in its representations for a project of
this size (it left too much up to the designer's judgment).

As a result, the team developed their own object-oriented
methodology that incorporates ideas from both Cherry's and
Booch's methods. The methodology produces object diagrams
as the final result of objectldata flow analysis. Two
orthogonal hierarchies exist:

0 Parent-child hierarchy (object decomposition)

0 Seniority hierarchy (an object using the services
of another is senior to the used object)

The new object-oriented methodology maps very well into Ada,
because both were developed with modern software engineering
concepts in mind (e.g., data abstraction, information hid-
ing). Objects easily convert to packages, and packages en-
courage modularity .
One of the successful results from the design is the modu-
larity. The team felt that this helped make interfaces
easier to design, and increased interface reliability is

3-5
0 4 4 8

expected at testing. Another important effect of modularity
in the design is the ease of adding new programmers to the
project and phasing out others if required.

Another successful point is that the original design is
still being followed in implementation, without major
changes. The changes that have been made are additions.
The team now feels that not enough attention was given to
type specifications during design. However, it was felt
that the object diagrams were helpful as a framework for
discussing proposed changes.

3 . 4 DOCUMENTATION OF DESIGN

3.4.1 USEFULNESS OF OBJECT DIAGRAMS

Object diagrams are the key type of documentation produced
by the Ada team's object-oriented methodology. Structure
charts are the documentation produced with the standard
FORTRAN design process.

The lack of a specific methodology at the start of the proj-
ect was a problem, although unavoidable in this case because
of the objectives of the study. The representations changed
over time as the methodology developed, which was a big
problem because it was difficult to keep the design docu-
ments consistent. To apply a methodology well, everyone
needs to know the ground rules at the start. This facili-
tates understanding between developers on the team and be-
tween the team and the managers.

The key issue here is the importance of people's expecta-
tions. Less precision in structure charts and FORTRAN pres-
entations at the PDR and CDR is acceptable than would be
allowed with Ada documentation. Because the representations
are so different for the Ada documentation, any unspoken
understandings and intuition are lost.

3-6
0 4 4 8

8
I
1
I
8
1
C

1
E
i.

J
a

Managers were unable to understand the object diagrams at
these reviews. They tried to look at them as though they
were the familiar structure charts, and could not visualize
the design. Object diagrams contain a high level of detail,
to express all the relationships they are capable of ex-
pressing. If some type of modification were made to sup-
press details of relationships between modules so that some
relationships could be shown between a greater number of
modules, the gap between object diagrams and structure
charts would be lessened.

Even so, training is needed to make the object diagrams fam-
iliar to managers and reviewers. Unfamiliarity leads to
concerns that something is being hidden. In addition, when
the design is not understood because of the representation,
the developers get less feedback on their design.

One clear implication of this experiment is the need for
educating managers and reviewers in both Ada and the new
concepts of software engineering. An Ada-oriented develop-
ment requires a fair amount of knowledge on the part of the
reviewers. More and different types of information must be
examined to validate each phase of the life cycle.

3 . 4 . 2 COMPILABLE DESIGN ELEMENTS

Another aspect of the design documentation that was investi-
gated for GRODY is the concept of using compilable design
elements. Ada itself can work well as a compilable PDL,
whereas the PDL used with FORTRAN is pseudocode. The ad-
vantage of compilable PDL is that it permits interface
checking and type checking, which help ensure the validity
of the design in a way not otherwise possible at this early
stage of development. This requires more precision in the
design process than is required in
sign process, but it provides more
during the PDR and CDR.

3-7
-0448

the standard FORTRAN de-
assurance and confidence

The Ada team developed only a small portion of the PDL for
GRODY in compilable Ada elements during the design work that
occurred before the reviews because they did not have enough
time to do it all. However, they felt that this would have
been very beneficial and actually did develop these elements
in early implementation. Most team members felt that this
activity should normally be considered a part of the design
phase.

3.5 DIFFERENCES IN THE DESIGNS

The resulting FORTRAN and Ada designs were studied to deter-
mine if there were any real differences between them. Some
previous experiences using Ada for scientific applications
had shown that the design developed for the Ada system was
very similar to a FORTRAN design (References 18 and 19).
Since considerable effort has been expended during the GRODY
project to develop an independent design, the question is--
Is the design really different?

An examination of the two designs reveals several differ-
ences (Figure 3-1). The Ada design does "look" different
from the FORTRAN design. The Ada design consists of one
program with five subsystems, whereas the FORTRAN design
involves three programs: a profile program, which calcu-
lates the attitude; the simulator, which consists of the
truth model, the OBC model, and the simulation control
logic; and the postprocessor program, which analyzes the
results. The Ada program assigns different functional proc-
essing to its corresponding subsystems such that the func-
tions of the FORTRAN profile program are incorporated into
the Ada truth model. The Ada user interface performs the
functions of the FORTRAN postprocessor and some of the user
interaction performed by the FORTRAN simulation control
program. The simulation support and control functions are
separated into two Ada subsystems. The Ada OBC subsystem is

3-8
0448

FORTRAN SYSTEM DIAGRAM

INPU'I:

ADA SYSTEM DIAGRAM

INPUT:

Tam
WOOLL

COYMANOS

t €Xl€RMAL OATA FLOW OUTPUT:

W-AO11414

Figure 3-1. .FORTRAN and A d a System Diagrams

3-9

functionally similar to the FORTRAN OBC subsystem. These
differences in assignment of functional processing to the
subsystems result in different data flows between the var-
ious subsystems.

In addition to these structural differences, there are two
fundamental differences in the basic operation of the simu-
lators. The first is that the FORTRAN simulator operates on
a "fixed time step** principle, whereas the Ada simulator
operates on a '*calendar of events" principle. During an
iteration of the FORTRAN simulator, the simulator control
program wakes up the truth model, which computes the atti-
tude state and places the corresponding sensor data in a
holding area. The trcth model then signals the control pro-
gram to wake up the OBC subsystem, which obtains the sensor
data, models the control laws, and generates the actuator
commands, which are placed in a holding area for the truth
model to use on the next iteration. The OBC then signals
the control program to wake up the subsystem that writes out
the analysis record resulting from this iteration. At the
completion of this writing, control is returned to the simu-
lator control program to begin the next iteration. In the
FORTRAN design, the user sets the cycle time (the amount of
time that the simulation clock is incremented), and this
cycle time determines when events occur in the simulation.
In the Ada design, there is an external timer that causes
automatic advancement of the scheduler in the OBC so that
the cycling of the clock is like that in the actual space-
craft OBC and is not under user control (Figure 3-2).

The second'operational difference in the two designs is the
passive nature of the truth model in the Ada design. The
Ada OBC subsystem calls the truth model to obtain sensor
data whenever it is needed. The user can control the cycle
time in the truth model, but this does not affect the timing

3-10
0448

in the OBC. More information on the design differences is
presented in Reference 19.

muTH
MODEL

FORTRAN DESIGN

OBC SIMULATION
MODEL OUTPUT

3.6

ADA DESIGN

SIMULATION
CONTROL

Figure 3-2. Comparison of FORTRAN and Ada Simulator
Operations

CHANGES IN THE DESIGN PHASE OF THE LIFE CYCLE

The legacy is that the starting point for design is a speci-
fications document already containing the preliminary de-
sign. As has been shown, a preliminary design oriented
toward FORTRAN would severely limit an Ada design because it
would not take advantage of Ada's unique features. In this
case, with the specifications rewritten, there was less de-
sign in the specifications document. However, since the
document still contained some unfamiliar design, it is un-
clear exactly where requirements analysis of the specifica-
tions stopped and the design phase began.

0448

3-11

The milestones of the design phase may also be different.
In the usual software life cycle with FORTRAN, the require-
ments for a PDR and CDR are well defined, and the breaks
between life-cycle phases seem logical and real. There is,
however, no direct conversion for Ada, because the new
object-oriented methodology and its documentation are so

different from the traditional ones. Again, preliminary
design seems to fade into detailed design, and detailed de-
sign fades into coding. It thus seemed that the PDR and CDR
for the Ada design occurred at arbitrary times rather than
at logical points in the design process.

Figure 3-3 shows the level of effort during design in weekly
or biweekly increments. The Ada team level of effort.shows
large peaks around the time of the PDR and CDR, indicating
that the team felt additional effort was necessary to pre-
pare for these reviews. The FORTRAN team level of effort
shows a similar peak for the PDR but a much more level curve
approaching the CDR, with an actual decrease in design ef-
fort close to the CDR.

The members of the Ada team held different opinions on how
well prepared they were for the PDR and CDR. One team mem-
ber in particular felt more prepared than usual because he
understood the design and its implications so well. Others
felt less prepared than usual because of the newness of the
methodology and representations and because they were unsure
how to map the state of the design into the format generally
expected at the PDR and CDR.

The concept of having two reviews seems to be desirable when
designing in Ada, but it appears that the timing of these
reviews should be different. For example, the PDR could
occur later than normal, but with more rigor. The PDR could
be represented by high-level compilable design elements, and

3-12
0448

8
I

1
E
I
Ili
3
1

m
LL
LL
U

1
n
I
z
I
I
I
1
II

FORTRAN TEAM LEVEL OF EFFORT
DURING DESIGN

WK7 8 9 10 1 1 12
FEB MARCH

13 14 15
APRIL
1985

16 17 18 19 20 21 22 23
MAY

ADA TEAM LEVEL OF EFFORT
DURING DESGN

6

. . .
SEP OCT NOV DEC -JAN' FEB MAR APR

1985 1986

JUNE

Figure 3-3. Levels of E f f o r t f o r FORTRAN and Ada Teams
During Design

3-13

CDRs might be staged for different design elements by exam-
ining more detailed Ada PDL pieces. The specific design
products to be completed during each design phase should be
defined for future Ada development projects. Figure 3-4

shows the differences in schedule between the two projects;
requirements analysis, design, and implementation all took
longer for the Ada project. Some Ada team members felt that
design efforts continued into implementation and that a
longer design phase would be helpful. It is hoped that the
additional time spent in design will result in less time
spent for the remaining phases.

REQTS.
ANALY-

SIS

DESIGN IMPLEMENTATION s ~ ~ ~ ~ M
FORTRAN

TEAM
'

IMPLEMENTATION

I I I I I I I

TEAM a1 I 0 4 ai i a2 I a 4
ADA

I I I 1 I I I 1 I

1 s 1988 1987

Figure 3-4 . FORTRAN and Ada Team Schedules (Effort Levels
Vary)

3.7 STAFFING CONSIDERATIONS

Because the development of GRODY was a new venture in the
flight dynamics environment, the team assigned from the
start of the project was the size team that would normally
be used on this type of project during the implementation
phase. This was done to train the team as a whole from the
very beginning, since there was very little Ada expertise

3-14
0448

available in this environment. From a training point of
view, it was quite successful to have the whole team
together from the initial phases of the project. However,
during the requirements analysis phase, it was felt that a
smaller initial team would have been able to perform more
efficiently. The larger team size resulted in more time
being spent in meetings.

The size of the team during the design phase was also larger
than normal for the design of a project this size in the
flight dynamics environment. This larger team was needed
because the amount of design work done on GRODY was greater;
the top-level design was actually done using three different
methodologies. Even considering this, a future project
might want to consider a larger design staff, since it seems
to take longer to develop a complete Ada design. A complete
Ada design does, however, describe the system better than a
corresponding FORTRAN design because there are more expres-
sible relationships (exception handling, etc.) and more de-
sign validation is possible (type checking, interface
checking, etc.).

Future Ada development projects might benefit from using a
smaller team initially and then building up during design
and through implementation. This follows the type of staff-
ing profile currently used on FORTRAN projects. As more
people become familiar with Ada and its methodologies, it
will be easier for them to join such a project during its
later phases. As already noted, the object-oriented design
produces a type of design that can be picked up and imple-
mented by a coder who was not involved with the design.

3.8 COST OF USING NEW DESIGN

One important factor when considering a changeover to Ada
and the new type of design that Ada implies is the real cost
of such a change. In the flight dynamics environment, using

3-15
0448

1
c

the type of design that takes full advantage of Ada's bene-
fits means the loss of the whole FORTRAN legacy. This
legacy includes old specifications, old design, old code,
intuition, and institutional knowledge that is not recorded
anywhere. Developing such a legacy for Ada takes time and
costs money. Continuing observations of this project and
future similar projects will provide more insight into the
question of the value of Ada's benefits when compared to the
cost of the changeover.

3.9 COST OF TRANSITIONING TO ADA AT DIFFERENT LIFE-CYCLE
PHASES

Another factor influencing the cost of transitioning from
FORTRAN to Ada is the point in the life cycle at which the
change from FORTRAN development methods to Ada development
methods occurs. The alternatives and their consequences are
as follows:

Alternative Conseauence

Ada at project start

Ada after requirements
analysis
Ada after design

Best opportunity to cast
requirements in a more
language-neutral form
Effective only if FORTRAN
legacy is remnved
P r ocedu r a 1 "Ad at r an "

Source language conversion Maintenance problems

This experiment chose to consider Ada as the development
language from the beginning of the project. This seems to
be the ideal situation because it provides the best oppor-
tunity to cast the requirements in a more language-neutral
form. The developers are then free to develop the best pos-
sible design, based on both satisfaction of the requirements
and efficient use of the development language.

The decision to use Ada could have been postponed until
after a traditional requirements analysis phase. Based on

3-16
0 4 4 8

the experience gained during the GRODY project, such a deci-
sion would probably be effective only if the requirements
had been written in a language-independent form before re-
quirements analysis. Otherwise, the development team has
two choices: First, they would need to spend additional
time removing any previous language legacy from the require-
ments before any real design efforts could begin. Second,
they would be constrained in their design choices by design
features already ingrained in the requirements document.
The first choice would result in a better Ada system but
would cost more because of the additional time required to
recast the requirements. The second choice would result in
a design that might not be well suited for an Ada implemen-
tation and could result in a less reliable system that is
more difficult to maintain.

If the change to Ada is made after the design phase is com-
pleted, the consequences are similar to the second choice
but are even more pronounced. The design would certainly
.not be based on effective use of Ada's features and would
not be able to use any of Ada's language-specific features.
This would result in an "Adatran" program, that is, a pro-
gram developed in Ada that iooks just like a FORTRAN pro-
gram. Such a program would lose any design advantages Ada
might have offered, and the reliability and maintainability
of the system could be affected. The cost of a conversion
to Ada after design would thus be the increased cost of
maintenance.

The last possibility to be considered is a decision to
change to Ada after implementation in another language,
probably FORTRAN. This would again result in an "Adatran"
type of program that would be even less desirable than the
previous case. When Ada is the original implementation lan-
guage, certain design modifications or interpretations would
probably be applied to make the design more suitable for

3-17
0 4 4 8

Ada. But in the case of source language conversion, none of
this modification is practical, and the result would prob-
ably be the use of only a limited set of Ada's features. In
addition, some of the features used might need to be molded
to fit FORTRAN capabilities that did not quite correspond to
the nearest Ada equivalent. Such changes would certainly
result in a loss of reliability and an increase in mainte-
nance problems. According to the SEL figures (Reference 2),
the annual cost of error correction and maintenance usually
ranges from 10 to 35 percent of the original development
cost, so an increase in these percentages would be expensive.

Based on the experience gained during the GRODY project, it
seems that the,best time to transition to Ada is at the
start of the project--even before the requirements and spec-
ifications are developed. This seems to be the only way to
produce an Ada system that is efficient in its use of Ada
and that can take advantage of Ada's features for increased
portability and maintainability.

3-18
0448

SECTION 4 - SUMMARY AND RECOMMENDATIONS

What have we learned from the design phase of GRODY, and
where do we go from here? In response to the first ques-
tion, the conclusions reached can be summarized as follows:

1. Training is important.

a. A team designing a project to be implemented
in Ada should be trained not only in Ada, but
in several different design methodologies in
addition to the one to be used on the project.

b. Managers and reviewers should have some train-
ing in the design methodology to be used, to
better evaluate the design and provide more
useful feedback.

2. The specification method should not constrain the
design. The requirements document should be lan-
guage neutral and should not contain a bias toward
any particular design method.

3 . Methodology is important.

a. The design methodology should be chosen as

early as possible so that the team can be
trained and valuable time will not be wasted
trying to use an unsuitable methodology.

b. The methodology chosen should exploit Ada's
features (e.g., packages, task, and generics).

c. Object diagram methodology seems to be an ex-
tremely useful method for developing the de-
sign for the type of project encountered in
the flight dynamics environment.

4-1
0448

4 . Documentation of an Ada design requires different
design products than are used to describe a FORTRAN
design.

a. Object diagrams were a very suitable represen-
tation for the GRODY design.

b. Compilable design elements developed in Ada
are very useful for providing validation of
the design as well as for documentation.

5 . Designing with Ada may imply different starting and
ending points of the design phase.

6. It costs money to make a changeover to a new design
and discard all the previous legacy associated with
all phases of a FORTRAN development.

In response to the second question--Where do we go from
here?--the following recommendations can be made for future
projects. It seems wise to modify the usual software life
cycle when developing with Ada by expanding the design phase
to allow more time for design. The PDR and CDR should be
retained but should occur at different points in the life
cycle.

The PDR should occur later in the design phase and should
include descriptions of the high-level elements and their
input/output interfaces. These high-level elements could be
well represented by using object diagrams. The description
of these elements should be completed with compilable PDL.
The CDR would then include a description of the more de-
tailed design elements.

Continued study of GRODY and similar projects in the future
will determine the suitability of Ada in the flight dynamics
environment and will determine if the advantages gained by
the use of Ada will outweigh the loss of the FORTRAN legacy.

4-2

0448

I
I
I
1
I
I
1
I
8
8
8
I
1
8
I
I
I
8
I

GLOSSARY

CDR
csc
CSM
GRO
GRODY
GSFC
NASA
OBC
OOD

PAM

PAMELA

PDL

PDR .
SEL
SLOC

critical design review
Computer Sciences Corporation
Composite Specification Model
Gamma Ray Observatory
Gamma Ray Observatory Dynamics Simulator
Goddard Space Flight Center
National Aeronautics and Space Administration
onboard computer
object-oriented design
Process Abstraction Method
Process Abstraction Method for Embedded Large
Applications
program design language
preliminary design review
Software Engineering Laboratory
source lines of code

G-1
0448

. REFERENCES

1. Software Engineering Laboratory, SEL-81-205, Recommended
Approach to Software Development, F. McGarry, G. Page,
S. Eslinger, et al., April 1983

2. Software Engineering Laboratory, SEL-84-001, Manaser's
Handbook for Software Development, W. Agresti,
F. McGarry, D. Card, et al., April 1984

3. Goddard Space Flight Center, "An Experiment With Ada
--The GRO Dynamics Simulator Project Plan," F. McGarry
and R. Nelson, April 1985

4. Computer Sciences Corporation, PCA/IM-85/055(455), "The
Ada Experiment--An Interim Report," W. Agresti, December
1985

5. Computer Sciences Corporation, CSC/SD-85/6106, Gamma Ray
Observatorv Dynamics Simulator Requirements and Mathe-
matical Spec ifications, G. Coon, April 1985

6. Software Engineering Laboratory, SEL-85-002, Ada Train-
ina Evaluation and Recommendations, R. Murphy and
M. Stark, October 1985

7. W. Agresti, "Measuring Ada as a Software Development
Technology in the Software Engineering Laboratory
(SEL)," Proceedinas, Tenth Annual Software Ensineerinq
Workshop, NASA/GSFC, December 1985

8 . Software Engineering Laboratory, SEL-87-003, Guidelines
for ARDlYinU the Composite Specification Model (CSM),
W. Agresti, June 1987

9.- Computer Sciences Corporation, CSC/TM-85/6108, Specifi-
cation of the GRO Dynamics Simulator in Ada (GRODY),
W. Agresti, E. Brinker, P. Lo, et al., November 1985

10. Computer Sciences Corporation, PCA/IM-85/041(455), "GRO
Dynamics Simulator (GRODY) Requirements Assessment Re-
port," W. Agresti, E. Brinker, P. Lo, et al., September
1985

11. G. Booch, Software Enaineerina With Ada. Menlo Park,
California: Benjamin/Cummings Publishing Co., Inc., 1983

R- 1
0448

I
I
1
1
I
I
1
I
0
I
I
II
1
8
I
I
I
8
U

12. G. W. Cherry, "Advanced.Software Engineering With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston,
Virginia, 1985

13. Goddard Space Flight Center, "Some Principles in Object-
Oriented Design," E. Seidewitz, August 1985

14. Software Engineering Laboratory, SEL-86-002, General
Obiect-Oriented Software Development, E. Seidewitz and
M. Stark, August 1986

15. E. Seidewitz and M. Stark, "Toward a General Object-
Oriented Software Development Method," Proceedinss of
the First International Sympo sium on Ada for the NASA
Space Station, Houston, Texas, June 1986

16. Computer Sciences Corporation, PCA/IM-85/052(455), "GRO
Dynamics Simulator in Ada (GRODY) Preliminary Design Re-
port," W. Agresti, E. Brinker, P. Lo, et al., December
1985

17. C. Brophy, W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedinas of
the Washinuton Ada S y m p osium, Washington, D.C., March
1987

18. V. Basili et al., "Characterization of an Ada Software-
Development, Io Compute r, September 1985, vol. 18, no. 9,
pp. 53-65

19. W. Agresti, V. Church, D. Card, and P. Lo, "Designing
With Ada for Satellite Simulation: A Case Study," Pro-
ceedinss of the First International Symposium on Ada for
the NASA Space Station, Houston, Texas, June 1986

R - 2
0448

I
' D

STANDARD BIBLIOGRAPHY OF SEL. LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedinss From the First Summer Software Enqi-
neerina Workshop, August 1976

SEL-77-002, Proceed inss From the Second Summer Software En-
sineerina Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September. 1977

SEL-77-005, GSFC NAVPAK Desisn Specifications Lansuases
Studv, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinas From the Third Summer Software Enqi-
neerina WorkshoD, September 1978

SEL-78-006, GSFC Software Ensineerins Research Requirements
Analysis Studv , P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Ravleish Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Prosram
(SAP) User's Guide (Revision 3 1 , W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, The Software Ensineerinq Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S . R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Desian Lanauaae (PDL) in the Goddard Space Flisht Cen-
ter (GSFC) Code 580 Software Desian Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
0448

SEL-79-005, Proceedinas From the Fourth Summer Software En-
gineerinu Workshop, November 1979

SEL-80-002, Multi-Level Exuression Desian Lanauaae-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Sumort
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Studv, T. Welden, M. McClellan, and
P . Liebertz, May 1980

SEL-80-005, A Studv of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinas From the Fifth Annual Software Enai-
neerina Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software SYstems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enaineerina Laboratory Proarammer Work-
bench Phase 1 E valuation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinu So ftware Development bv Analysis of
Chanue Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleiah Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software SYS terns, G. 0.
Picasso, December 1981

SEL-81-013, Proceedinas From the Sixth Annual Software Enai-
neerins Workshop, December 1981

SEL-81-014, Automated Collection of Software Ensineerinq
Data in the Software Enaineerina Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data'Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Enqineerina Laboratory (SEL) Data Base
Oraanization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

B-2
0448

SEL-81-104, The Software Enaineerinu Laboratory, D. N. Card,
F. E..McGarry, G. Page, et al., February 1982

SEL-81-106, Software Enaineerins Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Ensineerinu Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (I V & V) Methodolow for Flisht Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Ensineerinu Laboratory (SEL) Data Base
Maintenance SYS tem (DBAM) Us er's Guide and System DescriD-
tion, P. Lo, June 1984

SEL-61-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Manasement Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Enaineerinu Laboratory (SEL) Data Base
Reportinu Software User's Guide and System Description,
P. Lo, August 1983

SEL-82-004, Collected Software Ensineerins Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedinas From the Seventh Annual Software
Enuineerinu Workshop, December 1982

SEL-82-008, Evaluatinu Software Development by Analysis of
Chanses: The Data From the Software Ensineerina Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Prosram
(SAP) System DescriPtion (Revision 11, W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enuineerins Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

B-3
0448

SEL-82-406, Annotated Bibliosraphv of Software Ensineerinq
Laboratorv Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1986

SEL-83-001, An Amroach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D.' N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Ensineerina Papers: Vol-
ume 11, November 1983

SEL-83-006, Monitorins Software Development Throuah Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceed inas From the Eiahth Annual Software En-
uineerina Workshop, November 1983

SEL-84-001, Manaser's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Confisuration Manasement and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investisation of Specification Measures for the
Software Enaineerina Laboratorv (SELL, W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceed inas From the Ninth Annual Software Ensi-
neerina WorkshoD, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niaues, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Trainins Evaluation and Recommendations From
the Gamma Ray Observatorv Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Ensineerinu Papers:
Volume 111, November 1985

SEL-85-004, Evaluations of Software Technolosies: Testinu,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testinq, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinss From the Tenth Annual Software
Enuineerina Workshop, December 1985

- B-4
0448

SEL-86-001, Prosrammer's Handbook for Fliaht Dynamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliaht Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enaineerina Pauers:
Volume IV, November 1986

SEL-86-005, Measurina Software Desian, D. N. Card, October
1986

SEL-86-006, Proceedinas From the Eleventh Annual Software
Enaineerina Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for
Fliaht Dynamics S oftware Development, S. Perky et al., March
1987

SEL-87-002, Ada Sty le Gu ide (Version 1.11, E. Seidewitz
et al., May 1987

SEL-87-003, Guidelines for APPlvina the Comuosite
Specification Model (CSMl, W. W. Agresti, June 1987

SEL-87-004, Assess ina the Ada Desian Process and Its Impli-
cations: A Case Study, S. Godfrey, C. Brophy, et al.,
July 1987

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Suecification Measures for the
Software Enaineerina Laboratorv, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedinas of the First International Symposium on Ada for
the NASA Space Station, June 1986

ZAgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Proaram Transformation and Pro-
arammina Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedinas of the
Fifth International Conference on Software Enaineerinq.
New York: IEEE Computer Society Press, 1981

B-5
0448

IBasili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technolow,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software
Manauement and Enuineerinq. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedinus of the First Pan-Pacific Computer
Conference, September 1985

IBasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?##, Journal of Systems and Software, February 1981,
vol. 2, no. 1

IBasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and So ftware, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedinus of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January i984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedinus of the ACM SIGMETRICS Svmposium/WorkshoP: Oual-
itv Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedinss of the IEEWMITRE Expert Systems in Government
Smposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedinus of the Workshop
on Ouantitative Software Models for Reliability, Complexitv,
and Cost. New York: IEEE Computer Society Press, 1979

B-6
0448

ZBasili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Enaineerinq, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedinas of the Eiahth International Conference on Soft-
ware Enaineerinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparina the'Effective-
ness of Software Testina Strateaies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Enaineerinq, July 1986

2Basili, V.R., and D. M. Weiss, A Methodoloav for Collect-
inu Valid Software Enaineerina Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Enaineerinq, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedinas of the
Fifteenth Annual Co nference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedinas of the Software Life
Cycle Manauement Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedinas o f the Second Soft-
ware Life Cycle Manaaement Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and St ructures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedinas of the Third Interna-
tional Conference on Software Enaineerinq. New York: IEEE
Computer Society Press, 1978

3Card, D. N., "A Software Technology Evaluation Program, *'
Annais do XVIII Conaresso Nacional de Informatica, October
1985

B-7
0448

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transactions
on Software Enaineerinq, February 1986

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedinas of the Eiahth Interna-
tional Conference on Software Enaineerinq. New Y o r k : IEEE
Computer Society Press, 1985

khen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
inas of the Fifth International Conference on Software
Enaineerinq. New Y o r k : IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types," ACM Software Enaineerina Notes , July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedinas of the.
Seventh International Computer Software and Applications
Conference. New Y o r k : IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedinas of the Hawaiian Inter-
national Conference o n Svste m Sciences, January 1985

3?age, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedinas of the Eicrhth International Computer Software
and Applications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedinas of the Eiahth Inter-
national Conference on Software Enaineerinq. New Y o r k :
IEEE Computer Society Press, 1985

4Seidewitz, E., and M. Stark, "Towards a General Object-

the First International S Y ~ D O sium on Ada for the NASA Space
Station, June 1986

Oriented Software Development Methodology," Proceedinas o f

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

B-8
0448

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
veldpment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Enqineerinq, February 1985

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedinas of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedinus of the Soft-
ware Life Cycle Manaaement WorkshoP, September 1977

NOTES:

lThis article also appears in SEL-82-004, Collected Soft-

2This article also appears in SEL-83-003, Collected Soft-

3This article also appears in SEL-85-003, Collected Soft-

lThis article also appears in SEL-86-004, Collected Soft-

ware Enaineerina Papers: Volume I, July 1982.

ware Enaineerins Papers: Volume 11, November 1983.

ware Enaineerins Papers: Volume 111, November 1985.

ware Enaineerina PaDers: Volume IV, November 1986.

B-9
0448

